(本题满分15分)
经过长期的观测得到:在交通繁忙时段,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为
.
(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?
(精确到0.1千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
已知曲线
过点P(1,3),且在点P处的切线
恰好与直线
垂直.求 (Ⅰ) 常数
的值; (Ⅱ)
的单调区间.
(本小题满分14分)
设函数
.
(1)求函数
的单调增区间;
(2)若不等式
在
恒成立,求实数m的取值范围.
(3)若对任意的
,总存在
,使不等式
成立,求实数m的取值范围.
(本小题满分13分)
设a、b、c分别是先后掷一枚质地均匀的正方体骰子三次得到的点数.
(1)求使函数
在R上不存在极值点的概率;
(2)设随机变量
,求
的分布列和数学期望.
(本小题满分12分)
已知函数
,曲线
在点
处的切线方程为
.
(1)求函数
的解析式;
(2)过点
能作几条直线与曲线
相切?说明理由.
(本小题满分12分)
如图,用半径为R的圆铁皮,剪一个圆心角为
的扇形,制成一个圆锥形的漏斗,问圆心角
取什么值时,漏斗容积最大.(圆锥体积公式:
,其中圆锥的底面半径为r,高为h)
