(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。
(12分)已知圆C1:与圆C2:相交于A、B两点。
⑴ 求公共弦AB的长;
⑵ 求圆心在直线上,且过A、B两点的圆的方程;
⑶ 求经过A、B两点且面积最小的圆的方程。
(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。
⑴ 写出该抛物线的标准方程和焦点F的坐标;
⑵ 求线段BC的中点M的坐标;
⑶ 求BC所在直线的方程。
(12分) 已知四棱锥,底面ABCD,其三视图如下,若M是PD的中点
⑴ 求证:PB//平面MAC;
⑵ 求直线PC与平面MAC所成角的正弦值。
(12分)已知有两个不等的负根,无实数根,若p或q为真,p且q为假,求m的取值范围。
下面关于四棱柱的四个命题:
① 若有两个侧面垂直于底面,则该四棱柱为直四棱柱;
② 若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;
③ 若四个侧面面面全等,则该四棱柱为直四棱柱;
④ 若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱。
其中真命题的编号是 (写出所有真命题的编号)。