对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点
为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,请回答问题:
若函数
,
则
= .
观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
……
照此规律,第
个等式为
若
,则方程
表示不同的直线有__________条.
已知
则![]()
如图,设抛物线
(
)的准线与
轴交于
,焦点为
;以
、
为焦点,离心率
的椭圆
与抛物线
在
轴上方的一个交点为
.

(1)当
时,求椭圆的方程;
(2)在(1)的条件下,直线
经过椭圆
的右焦点
,与抛物线
交于
、
,如果以线段
为直径作圆,试判断点
与圆的位置关系,并说明理由;
(3)是否存在实数
,使得
的边长是连续的自然数,若存在,求出这样的实数
;若不存在,请说明理由.
已知函数
.
(1)求函数
在区间
上的最大、最小值;
(2)求证:在区间
上,函数
的图象在函数
的图象的下方.
