设,其中.
(1)若有极值,求的取值范围;
(2)若当,恒成立,求的取值范围.
已知数列的通项公式为
(1)试求的值;
(2)猜想的值,并用数学归纳法证明你的猜想.
一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球个数不少于白球个数的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7的取法
已知函数,其图像在点处的切线为.
(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;
(2)求、直线及轴围成图形的面积.
设存在复数z同时满足下列条件:
(1)复数z在复平面内对应点位于第二象限;
(2)z·+2iz=8+ai (a∈R),试求a的取值范围.
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心;且“拐点”就是对称中心.”请你根据这一发现,请回答问题:
若函数,
则= .