已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =" k" x 交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得ΔPAB为等边三角形,求k的值.
已知函数f(x) ="lnx" g(x) =-
(1)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x) ,求实数a的取值范围.
如图1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得点在平面ADC上的正投影O恰好落在线段上,如图2所示,点分别为线段PC,CD的中点.
(I) 求证:平面OEF//平面APD;
(II)求直线CD与平面POF
(III)在棱PC上是否存在一点,使得到点P,O,C,F四点的距离相等?请说明理由.
已知点 D 为ΔABC 的边 BC 上一点.且 BD ="2DC," =750,="30°,AD" =.
(I)求CD的长;
(II)求ΔABC的面积
已知等差数列{an}的前n项和为
(I)若a1=1,S10= 100,求{an}的通项公式;
(II)若 =n2-6n,解关于n的不等式+ an >2n
已知函数。
(1)若不等式的解集为,求实数的值;
(2)在(1)的条件下,若存在实数n使成立,求实数m的取值范围。