不透明的袋中有8张大小和形状完全相同的卡片,卡片上分别写有1,1,2,2,3,3,,.现 从中任取3张卡片,假设每张卡片被取出的可能性相同.
(I)求取出的三张卡片中至少有一张字母卡片的概率;
(Ⅱ)设表示三张卡片上的数字之和.当三张卡片中含有字母时,则约定:有一个字母和二个相同数字时为这二个数字之和,否则,求的分布列和期望.
已知等差数列前三项的和为,前三项的积为.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,,成等比数列,求数列的前项和.
已知双曲线的渐近线与圆有公共点,则该双曲线的离心率的取值范围是___________.
观察下列式子:, ,, ……,根据以上式子可以猜想:_______.
已知长方体的一个顶点上的三条棱长分别是4,8,,且它的8个顶点都在同一个球面上,若这个球面的表面积为,则 .
已知函数,其中常数.
(1)求的单调区间;
(2)如果函数在公共定义域D上,满足,那么就称 为与的“和谐函数”.设,求证:当时,在区间上,函数与的“和谐函数”有无穷多个.