已知数列满足:(其中常数).
(1)求数列的通项公式;
(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
设为正方形的中心,四边形是平行四边形,且平面平面,若.
(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如下图的频率分布直方图.
(1)若该校高一年级共有学生人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(2)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
在中,分别是角的对边,,.
(1)求的值;
(2)若,求边的长.
不等式的解集是 .
理科(本小题14分)已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当,时,对任意大于,且互不相等的实数,都有