已知椭圆:()过点,其左、右焦点分别为,且.
(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.
已知数列满足:(其中常数).
(1)求数列的通项公式;
(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
设为正方形的中心,四边形是平行四边形,且平面平面,若.
(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如下图的频率分布直方图.
(1)若该校高一年级共有学生人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(2)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
在中,分别是角的对边,,.
(1)求的值;
(2)若,求边的长.
不等式的解集是 .