如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC= EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB
(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积
已知都是正数,且成等比数列,求证:
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
已知C点在⊙O直径BE的延长线上,CA切⊙O于A 点,CD是∠ACB的平分线且交AE于点F,交AB于点D
(1)求∠ADF的度数; (2)若AB=AC,求的值.
已知函数的图像过坐标原点,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为
直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
设分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。