数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+++ +与了Sn的大小.
如图,在四棱柱ABCD-A1B1C1D1中,已 知平面AA1C1C丄平面ABCD,且AB=BC=CA=, AD =" CD" =1
(I)求证:BD丄AA1;
(II)若四边形ACC1A1是菱形,且=600,求四棱柱 ABCD-A1B1C1D1的体积.
已知向量=(sin2x+2,cosx),=(1,2cosx),设函数f(x)= ·.
(I)求f(x)的最小正周期与单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若A=,b=f(),ΔABC的面积为,求a的值
若直线x=my-1与圆C:x2 +y2 + mx + ny + p =" O" 交于 A, B两点,且A,B两点关于直线y = x对称,则实数P的取值范围为_______.
挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:
a1b1+a2b2+a3b3+ +anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+ +Ln-1(bn-1-bn)+Lnbn
则其中:(I)L3= ;(Ⅱ)Ln= .
某三棱锥P-ABC的正视图为如图所示边长为2的正三角形,俯视图为等腰直角三角 形,则三棱锥的表面积是______.