设不等式组表示的平面区域为D,在区域D内随机取一点,则此点到坐标原点的距离大于1的概率为
A. B. C. D.
设函数
(Ⅰ)当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.
已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(Ⅰ) 求证:平面;
(Ⅱ) 求折后直线与平面所成角的余弦值.
袋中有大小相同的个编号为、、的球,号球有个,号球有个,号球有个.从袋中依次摸出个球,已知在第一次摸出号球的前提下,再摸出一个号球的概率是.
(Ⅰ)求、的值;
(Ⅱ)从袋中任意摸出个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望.
已知函数,.其图象的最高点与相邻对称中心的距离为,且过点.
(Ⅰ)求函数的达式;
(Ⅱ)在△中.、、分别是角、、的对边,,,角C为锐角。且满足,求的值.