在平面直角坐标系中,曲线为为参数)。在以为原点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,射线为,与的交点为,与除极点外的一个交点为。当时,。
(1)求,的直角坐标方程;
(2)设与轴正半轴交点为,当时,设直线与曲线的另一个交点为,求。
如图所示,已知是圆的直径,是弦,,垂足为,平分。
(1)求证:直线与圆的相切;
(2)求证:。
设函数。
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于,两点,求证:。
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(1)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(2)若的面积为,求向量的夹角;
如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又,且
(1)求证:;
(2)若,求直线与所成角的余弦值;
(3)若平面与平面所成的角为,求的值。
哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为。
|
优秀 |
非优秀 |
合计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |