已知函数,.
(Ⅰ)若函数,求的取值范围;
(Ⅱ)若不等式有解,求的取值范围.
曲线的参数方程为(为参数),将曲线上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线.
(Ⅰ)求曲线的普通方程;
(Ⅱ)已知点,曲线与轴负半轴交于点,为曲线上任意一点, 求
的最大值.
如图, ⊙O为的外接圆,直线为⊙O的切线,切点为,直线∥,交于,交⊙O于,为上一点,且.
求证:(Ⅰ);
(Ⅱ)点、、、共圆.
已知函数.
(Ⅰ)若在处取得极值,求实数的值;
(Ⅱ)若恒成立,求实数的取值范围.
如图,已知椭圆的中心在原点,其上、下顶点分别为,点在直线上,点到椭圆的左焦点的距离为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上异于的任意一点,点在轴上的射影为,为的中点,直线交直线于点,为的中点,试探究:在椭圆上运动时,直线与圆:的位置关系,并证明你的结论.
如图,已知三棱锥,,分别为的中点,且为正三角形.
(Ⅰ)求证:平面;
(Ⅱ)若,,求点到平面的距离.