已知函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;
(Ⅱ)若对于都有成立,试求的取值范围;
(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
判断命题“若且,则”是真命题还是假命题,并证明你的结论.
数列的前n项和记为,已知,.
证明:(1)数列是等比数列;
(2).
已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.
(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);
(2)判断(1)中命题的逆命题是否成立,并证明你的结论.
已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.