某单位为了提高员工素质,举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如图所示的茎叶图(单位:分),分数在175分以上(含175分)者定为“运动健将”,并给予特别奖励,其他人员则给予“运动积极分子”称号.
(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中抽取10人,然后再从这10人中选4人,求至少有1人是“运动健将”的概率;
(2)若从所有“运动健将”中选3名代表,求所选代表中女“运动健将”恰有2人的概率.
如图所示,在四棱锥中,底面为矩
形,⊥平面,,为上的点,若⊥平面
(1)求证:为的中点;
(2)求二面角的大小.
设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.
在△ABC中,角A,B,C的对边分别为a,b,c,cos =.
(1)求cosB的值;
(2)若,b=2,求a和c的值.
下列命题:①动点到两定点的距离之比为常数,则动点的轨迹是圆;②椭圆的离心率是;③双曲线的焦点到渐近线的距离是b;④已知抛物线上两点,且OA⊥OB (O是坐标原点),则.所有正确命题的序号是_______________.
已知△ABC的面积为,,则的最小值是___________.