曲线在点(0,1)处的切线方程为 。
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;
(2)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
已知在区间[0,1]上是增函数,在区间上是减函数,又.
(1) 求的解析式;
(2) 若在区间(m>0)上恒有≤x成立,求m的取值范围。
已知抛物线及点,直线斜率为1且不过点,与抛物线交于点A,B,
(1) 求直线在轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.
分别求适合下列条件圆锥曲线的标准方程:
(1)焦点为、且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.
已知函数:,其中:,记函数满足条件:的事件为A,求事件A发生的概率。