函数的最小值是,在一个周期内图象最高点与最低点横坐标差是,又:图象过点,
求(1)函数解析式,
(2)函数的最大值、以及达到最大值时的集合;
(3)该函数图象可由的图象经过怎样的平移和伸缩得到?
(4)当时,函数的值域.
已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求;
(2)证明:函数在上单调递增;
(3)当时,
①解不等式;
②求函数在上的值域.
据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
已知函数( )
(1)若从集合中任取一个元素,从集合中任取一个元素,
求方程恰有两个不相等实根的概率;
(2)若从区间中任取一个数,从区间中任取一个数
求方程没有实根的概率.
设p:实数x满足x2-4ax+3a2<0(其中a≠0),q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 |
分组 |
频数 |
频率 |
第一组 |
8 |
0.16 |
|
第二组 |
① |
0.24 |
|
第三组 |
15 |
② |
|
第四组 |
10 |
0.20 |
|
第五组 |
5 |
0.10 |
|
合 计 |
50 |
1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.