(本题满分10分)
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
⑴求证:A1C⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。
已知是抛物线的焦点,过且斜率为的直线交于两点.设,则的值等于 .
已知正三棱柱ABC—A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于________.
曲线在处切线的斜率是 .
已知函数
(I)求曲线在处的切线方程。
(II)设如果过点可作曲线的三条切线,证明:
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.