(本题满分12分)
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且
?若存在,写出该圆的方程,若不存在说明理由。
|
(本题满分12分)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
(本题满分12分)
已知函数。
(I)求的最小值;
(II)若对所有都有,求实数的取值范围。
(本题满分12分)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
(本题满分12分)
已知函数在点处的切线方程为.
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;
(本题满分10分)
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
⑴求证:A1C⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。