如图所示的曲线是由部分抛物线和曲线“合成”的,直线与曲线相切于点,与曲线相切于点,记点的横坐标为,其中.
(1)当时,求的值和点的坐标;
(2)当实数取何值时,?并求出此时直线的方程.
设抛物线,为焦点,为准线,准线与轴交点为
(1)求;
(2)过点的直线与抛物线交于两点,直线与抛物线交于点.
①设三点的横坐标分别为,计算:及的值;
②若直线与抛物线交于点,求证:三点共线.
已知函数,设
(1)试确定的取值范围,使得函数在上为单调函数;
(2)求函数在上的最小值.
设函数的图象如图所示,且与轴相切于原点,若函数的极小值为-4.
(1)求的值;
(2)求函数的递减区间.
中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.
某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后
驾车和醉酒驾车的驾驶员20人,下图是对这20人血液中酒精含量进行检查所得结果的频率分布
直方图.
(1)根据频率分布直方图,求此次抽查的250人中,醉酒驾车的人数;
(2)从血液酒精浓度在[70,90)范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.
如图所示,已知是椭圆 的左、右焦点,点在椭圆上,线段与圆相切于点,且点为线段的中点,则椭圆的离心率为 .