如图,在四棱锥中,底面ABCD是一直角梯形,,,,且PA=AD=DC=AB=1.
(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线与所成角的余弦值
已知点、到直线的距离相等,且直线经过两条直线和的交点,求直线的方程。
如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨迹的长度为
过圆C:作一动直线交圆C于两点A、B,过坐标原点O作直线ON⊥AM于点N,过点A的切线交直线ON于点Q,则= (用R表示)
已知直线与轴分别交于点,为坐标原点,则点到平分线的距离为
如下图所示,将平面四边形ABCD折成空间四边形,当平面四边形满足条件 时,空间四边形中的两条对角线互相垂直(填一个正确答案就可以,不必考虑所有可能情形)