(本题13分)设椭圆的左右焦点分别为,,上顶点为,过点与垂直的直线交轴负半轴于点,且是的中点.
(1)求椭圆的离心率;
(2)若过点的圆恰好与直线相切,求椭圆的方程;
(3)在(2)的条件下过右焦点作斜率为的直线与椭圆相交于两点,在轴上是否存在点使得以为邻边的平行四边形为菱形,如果存在,求出的取值范围,如果不存在,说明理由。
(本题12分)如图,平面,点在上,∥,四边形为直角梯形,,,
(1)求证:平面;
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。
(本题11分)已知圆,过原点的直线与圆相交于两点
(1) 若弦的长为,求直线的方程;
(2)求证:为定值。
(本题10分)三棱柱中,侧棱底面,,,
(1)求异面直线与所成角的余弦值;
(2)求证:
(本题10分)已知直线
(1)求直线和直线交点的坐标;
(2)若直线经过点且在两坐标轴上的截距相等,求直线的方程。
实数满足,则的最大值为 .