(本小题满分12分)已知双曲线的两个焦点为、点在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
(本小题满分12分)已知,设命题:函数为减函数,命题:当 时,函数恒成立;如果为真命题,为假命题,求c的取值范围
(本小题满分12分)袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:
(Ⅰ)3只全是红球的概率;
(Ⅱ)3只颜色全相同的概率;
(Ⅲ)3只颜色不全相同的概率.
(本小题满分12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组 |
频数 |
频率 |
50.5~60.5 |
6 |
0.08 |
60.5~70.5 |
|
0.16 |
70.5~80.5 |
15 |
|
80.5~90.5 |
24 |
0.32 |
90.5~100.5 |
|
|
合计 |
75 |
|
(Ⅰ)填充频率分布表的空格(将答案直接填在答题卡的表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?
(本小题满分10分)如图,,,,在线段上任取一点,
试求:(1)为钝角三角形的概率;
(2)为锐角三角形的概率.
已知直线与抛物线相交于、两点,为抛物线的焦点,若,则的值为 。