若已知集合,则 .
(本小题满分14分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、,
(1)求椭圆方程;
(2)求证:对任意的的允许值,的内心在定直线。
(本题满分13分)
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。
(1)解关于的不等式;
(2)当时,总有恒成立,求的取值范围。
(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点.
(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面?
(本小题满分12分)
(1)求直线被双曲线截得的弦长;
(2)求过定点的直线被双曲线截得的弦中点轨迹方程。
(本题满分12分)
已知集合在平面直角坐标系中,点的横、纵坐标满足。
(1)请列出点的所有坐标;
(2)求点不在轴上的概率;
(3)求点正好落在区域上的概率。