已知函数,.
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)设,若对任意的两个实数满足,总存在,使得成立,证明:.
已知中心在原点的椭圆C:的一个焦点为,为椭圆C上一点,的面积为.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线,使得直线与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线的方程;若不存在,请说明理由.
已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项.
(1)求数列、的通项公式;
(2)设数列对任意的,均有成立,求.
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表:
日销售量(吨) |
1 |
1.5 |
2 |
天数 |
10 |
25 |
15 |
(1)计算这50天的日平均销售量;
(2)若以频率为概率,且每天的销售量相互独立.
①求5天中该种商品恰有2天的销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2万元,X表示该种商品两天销售利润的和,求X的分布列和数学期望.
如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=.
(1)当时,求证:AO⊥平面BCD;
(2)当二面角的大小为时,求二面角的正切值.
已知函数.
(1)求的最小正周期及其单调增区间:
(2)当时,求的值域.