已知动点到点的距离与到直线的距离之比为定值,记的轨迹为.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
对数列,规定为数列的一阶差分数列,其中, 对自然数,规定为的阶差分数列,其中.
(1)已知数列的通项公式,试判断,是否为等差或等比数列,为什么?
(2)若数列首项,且满足,求数列的通项公式。
(3)对(2)中数列,是否存在等差数列,使得对一切自然都成立?若存在,求数列的通项公式;若不存在,则请说明理由。
如图,三棱锥中,是的中点,,,,,二面角的大小为.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
如图,在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图阴影部分所示,已知,路宽,设灯柱高,.
(1)求灯柱的高(用表示);
(2)若灯杆与灯柱所用材料相同,记所用材料长度和为,求关于的函数表达式,并求出的最小值.
某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),
结果用二维等高条形图表示,如图.
(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?
0.10 |
0.05 |
0.01 |
|
2.706 |
3.841 |
6.635 |
(参考数据与公式:
;
|
女 |
男 |
合计 |
关心 |
|
|
500 |
不关心 |
|
|
500 |
合计 |
|
524 |
1000 |
(2)已知校团委有青年志愿者100名,他们已参加活动的情况记录如下:
参加活动次数 |
1 |
2 |
3 |
人数 |
10 |
50 |
40 |
(i)从志愿者中任选两名学生,求他们参加活动次数恰好相等的概率;
(ii)从志愿者中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
如图,为圆的切线,为切点,过圆心,,圆的面积为,则 .