若,且、、三点共线,则的最小值为 .
已知,函数,.(的图象连续不断)
(1) 求的单调区间;
(2) 当时,证明:存在,使;
(3) 若存在属于区间的,且,使,证明:.
已知动点到点的距离与到直线的距离之比为定值,记的轨迹为.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
对数列,规定为数列的一阶差分数列,其中, 对自然数,规定为的阶差分数列,其中.
(1)已知数列的通项公式,试判断,是否为等差或等比数列,为什么?
(2)若数列首项,且满足,求数列的通项公式。
(3)对(2)中数列,是否存在等差数列,使得对一切自然都成立?若存在,求数列的通项公式;若不存在,则请说明理由。
如图,三棱锥中,是的中点,,,,,二面角的大小为.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
如图,在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图阴影部分所示,已知,路宽,设灯柱高,.
(1)求灯柱的高(用表示);
(2)若灯杆与灯柱所用材料相同,记所用材料长度和为,求关于的函数表达式,并求出的最小值.