设i是虚数单位,复数为纯虚数,则实数的值为 .
若集合,,则= .
设等差数列的公差,等比数列公比为,且,,
(1)求等比数列的公比的值;
(2)将数列,中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得和都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.
已知函数.
(1)判断奇偶性, 并求出函数的单调区间;
(2)若函数有零点,求实数的取值范围.
椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.
如图,已知⊙所在的平面,是⊙的直径,,C是⊙上一点,且,.
(1) 求证:;
(2) 求证:;
(3)当时,求三棱锥的体积.