将一些棱长为1的正方体放在的平面上如图1所示,其正视图,侧视图如下所示.若摆放的正方体的个数的最大值和最小值分别为,则
A.5 B.6 C.8 D.9
已知分别是双曲线的左右焦点,为双曲线的右顶点,线段的垂直平分线交双曲线于,且,则双曲线的离心率为
A. B. C. D.
|
已知数列中,,则下列关于的说法正确的是
A.一定为等差数列
B.一定为等比数列
C.可能为等差数列,但不会为等比数列
D.可能为等比数列,但不会为等差数列
已知圆与抛物线相交于,两点
(Ⅰ)求圆的半径,抛物线的焦点坐标及准线方程;
(Ⅱ)设是抛物线上不同于的点,且在圆外部,的延长线交圆于点,直线与轴交于点,点在直线上,且四边形为等腰梯形,求点的坐标.
已知函数.
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.
在平面四边形ABCD中,ABC为正三角形,ADC为等腰直角三角形,AD=DC=2,将ABC沿AC折起,使点B至点P,且PD=2,M为PA的中点,N在线段PD上。
(I)若PA平面CMN,求证:AD//平面CMN;
(II)求直线PD与平面ACD所成角的余弦值。