已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4.
(1)写出椭圆的方程和焦点坐标;
(2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
若函数.当时,函数取得极值.
(1)求函数的解析式;
(2)若函数有3个解,求实数的取值范围.
下列命题:①若存在导函数,则;②若函数,则;③若函数,则;④若三次函数,则“”是“f(x)有极值点”的充要条件;⑤函数的单调递增区间是.其中真命题为____.(填序号)
已知F1、F2分别是双曲线的左、右焦点,P为双曲线上的一点,若,且的三边长成等差数列,则双曲线的离心率是 .
已知双曲线的左、右焦点分别为、,过右焦点的直线交双曲线的右支于、两点,若,则的周长为
已知某几何体的三视图如图所示,若该几何体的体积为24,则正(主)视图中的值为 .