如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.
已知的展开式前三项中的的系数成等差数列.
(1)展开式中所有的的有理项为第几项?
(2)求展开式中系数最大的项.
为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表
|
患病 |
未患病 |
总计 |
没服用药 |
20 |
30 |
50 |
服用药 |
x |
y |
50 |
总计 |
M |
N |
100 |
设从没服用药的动物中任取两只,未患病数为X;从服用药物的动物中任取两只,未患病数为Y,工作人员曾计算过P(X=0)= P(Y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够有多大的把握认为药物有效?
(3)现在从该100头动物中,采用随机抽样方法每次抽取1头,抽后返回,抽取5次, 若每次抽取的结果是相互独立的,记被抽取的5头中为服了药还患病的数量为.,求的期望E()和方差D().
参考公式:(其中)
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
k |
1.323 |
2.072 |
2.706 |
3.845 |
6.635 |
7.879 |
在1,2,3,…,9这9个自然数中,任取3个数,
(1)记Y表示“任取的3个数中偶数的个数”,求随机变量Y的分布列及其期望;
(2)记X为3个数中两数相邻的组数,例如取出的数为1,2,3,则有这两组相邻的数1,2和2,3,此时X的值为2,求随机变量X的分布列及其数学期望E(X).
某班有6名班干部,其中男生4人,女生2人,任选选3人参加学校的义务劳动。
(1)求男生甲或女生乙被选中的概率
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(A)和P(B︱A)。
某市政府调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3 000人,计算发现K2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系的可信程度是_______。
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.025 |
0.010 |
0.005 |
k |
1.323 |
2.072 |
2.706 |
5.024 |
6.635 |
7.879 |