已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.
(1)若a=3,求(CRP)∩Q;
(2)若PQ,求实数a的取值范围.
双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.
有下列4个命题:
①函数在一点的导数值为是函数在这点取极值的充要条件;
②若椭圆的离心率为,则它的长半轴长为1;
③对于上可导的任意函数,若满足,则必有
④经过点(1,1)的直线,必与椭圆有2个不同的交点。
其中真命题的为 (将你认为是真命题的序号都填上)
定义在R上的偶函数f(x)在[0,+∞)上是增函数,且 ,则不等式 的解集是
如图是一个从的”闯关”游戏.
规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望。
如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.