盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.
已知,且展开式的各式系数和为243.
(I)求a的值。
(II)若,求中含的系数。
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则:
其中正确命题的序号为__ __(把所有正确命题的序号都填上).
设,函数,若对任意的,都有成立,则的取值范围为 .
在4名男生3名女生中,选派3人作为“519中国旅游 日庆典活动”的志愿者,要求既有男生又有女生,且男生甲和女生乙至多只能一人参加,则不同的选派方法有 种(用数作答).
计算:= .