已知函数
(Ⅰ)若有两个极值点,求实数的取值范围;
(Ⅱ)当时,讨论函数的零点个数.
设数列满足.
(Ⅰ)求,并由此猜想的一个通项公式,证明你的结论;
(II)若,不等式对一切都成立,求正整数m的最大值。
已知函数.
(I)若,求在处的切线方程;
(II)求在区间上的最小值.
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.
已知,且展开式的各式系数和为243.
(I)求a的值。
(II)若,求中含的系数。
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则:
其中正确命题的序号为__ __(把所有正确命题的序号都填上).