如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."
(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.
某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名, 以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎, 小数点后的一位数字为叶):
(1) 指出这组数据的众数和中位数;
(2) 若幸福度不低于9.5分, 则称该人的幸福度为“极幸福”.求从这16人中随机选取3人, 至多有1人是“极幸福”的概率;
(3) 以这16人的样本数据来估计整个社区的总体数据, 若从该社区(人数很多)任选3人, 记表示抽到“极幸福”的人数, 求的分布列及数学期望.
已知锐角△ABC的三内角A、B、C的对边分别是a、b、c, 且(b2+c2-a2)tanA=bc.
(1)求角A的大小;
(2)求sin(A+10°)·[1-tan(A-10°)]的值.
已知定义在R上的函数满足:且,, 则方程在区间上的所有实根之和为________
武汉臭豆腐闻名全国, 某人买了两串臭豆腐, 每串3颗(如图).规定:每串臭豆腐只能至左向右一颗一颗地吃, 且两串可以自由交替吃.请问:该人将这两串臭豆腐吃完, 有 种不同的吃法.(用数字作答)
二项式的展开式中不含项的系数和是______