下列命题中_________为真命题.
① “A∩B=A”成立的必要条件是“AB”,
②“若x2+y2=0,则x,y全为0”的否命题,
③“全等三角形是相似三角形”的逆命题,
④“圆内接四边形对角互补”的逆否命题。
已知点是抛物线的准线与双曲线的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则的最大值为_ __.
双曲线虚轴的一个端点为,两个焦点为、,,则双曲线的离心率为____________.
(本题满分14分)在平面直角坐标系中,已知圆,
圆.
(Ⅰ)若过点的直线被圆截得的弦长为,求直线的方程;
(Ⅱ)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围 ;
(Ⅲ)若动圆同时平分圆的周长、圆的周长,如图所示,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
(本题满分13分)如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径.
(Ⅰ)证明:平面平面;
(Ⅱ)设,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为.
(ⅰ)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面所成的角为,当取最大值时,求的值.
(本小题共12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
|
“厨余垃圾”箱 |
“可回收物”箱 |
“其他垃圾”箱 |
厨余垃圾 |
400 |
100 |
100 |
可回收物 |
30 |
240 |
30 |
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)试估计厨余垃圾投放正确的概率;
(Ⅱ)试估计生活垃圾投放错误的概率;
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.
(注:,其中为数据的平均数)