(本小题满分13分)
已知函数,
(I)求的单调区间;
(II)求在区间上的最小值。
(本小题满分13分)
某商场预计全年分批购入每台价值为2 000元的电视机共3 600台。每批都购入x台(x∈N*),且每批均需付运费400元。贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,比例系数为。若每批购入400台,则全年需用去运输和保管总费用43 600元,
(1)求k的值;
(2)现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由。
(本小题满分12分)
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且.
(1)确定角C的大小;
(2)若c=,且△ABC的面积为,求a+b的值。
(本小题满分12分)
已知数列是公差不为零的等差数列,=1,且成等比数列.
(1)求数列的通项;
(2)设,求数列的前n项和Sn.
(本小题满分12分)
(1) 求不等式的解集:
(2)求函数的定义域:
设为直线与双曲线左支的交点,是左焦点,垂直于x轴,则双曲线的离心率e="__________" 。