已知椭圆C的长轴长为,一个焦点的坐标为(1,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx与椭圆C交于A,B两点,点P为椭圆的右顶点.
(ⅰ)若直线l斜率k=1,求△ABP的面积;
(ⅱ)若直线AP,BP的斜率分别为,,求证:为定值.
(1)观察下列各式:
请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明。
(2)命题,函数单调递减,
命题上为增函数,若“”为假,“”为真,求实数的取值范围。
为了解目前老年人居家养老还是在敬老院养老的意向,共调查了50名老年人,其中男性明确表示去敬老院养老的有5人,女性明确表示居家养老的有10人,已知在全部50人中随机地抽取1人明确表示居家养老的概率为。
(1)请根据上述数据建立一个2×2列联表;
(2)居家养老是否与性别有关?请说明理由。
参考公式:
参考数据:
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
学校在开展学雷锋活动中,从高二甲乙两班各选3名学生参加书画比赛,其中高二甲班选出了1女2男,高二乙班选出了1男2女。
(1)若从6个同学中抽出2人作活动发言,写出所有可能的结果,并求高二甲班女同学,高二乙班男同学至少有一个被选中的概率。
(2)若从高二甲班和高二乙班各选一名现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率。
已知复数,问:当为何实数时?
(1)为虚数; (2)在复平面内对应的点在虚轴的负半轴上;
(3)
在复平面内,点所对应的复数是( )
A. B. C. D.