(本小题满分14分)
如图,已知椭圆,是椭圆的顶点,若椭圆的离心率,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.
(本小题满分12分)
如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且.
(Ⅰ)求证:平面平面;
(Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为?
(本小题满分12分)
已知双曲线C与椭圆有相同的焦点,实半轴长为.
(Ⅰ)求双曲线的方程;
(Ⅱ)若直线与双曲线有两个不同的交点和,且
(其中为原点),求的取值范围.
(本小题满分10分)
已知抛物线与直线交于两点.
(Ⅰ)求弦的长度;
(Ⅱ)若点在抛物线上,且的面积为,求点P的坐标.
(本小题满分12分)
在如图的多面体中,⊥平面,,,,,,,是的中点.
(Ⅰ) 求证:平面;
(Ⅱ) 求二面角的余弦值.
已知平面经过点,且是它的一个法向量. 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面的方程是 .