设,函数,其中是自然对数的底数。
(1)判断在R上的单调性;
(2)当时,求在上的最值。
直线与圆交于、两点,记△的面积为(其中为坐标原点).
(1)当,时,求的最大值;
(2)当,时,求实数的值.
在正方体ABCD—A1B1C1D1中,E、F分别为棱BB1和DD1的中点.
(1)求证:平面B1FC//平面ADE;
(2)试在棱DC上取一点M,使平面ADE;
(3)设正方体的棱长为1,求四面体A1—FEA的体积.
已知
(1)若的单调递增区间;
(2)若的最大值为4,求a的值;
(3)在(2)的条件下,求满足集合。
某食品加工厂甲,乙两个车间包装小食品,在自动包装传送带上每隔30分钟抽取一袋食品,称其重量并将数据记录如下:
甲:102 100 98 97 103 101 99
乙: 102 101 99 98 103 98 99
(1)食品厂采用的是什么抽样方法(不必说明理由)?
(2)根据数据估计这两个车间所包装产品每袋的平均质量;
(3)分析哪个车间的技术水平更好些?
附:
若函数是R上的单调递增函数,则的取值范围是 。