已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项
(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式
(Ⅲ)令,,求数列的前n项和.
如图,四棱柱中,平面,底面是边长为1的正方形,侧棱,
(Ⅰ)证明:;
(Ⅱ)若棱上存在一点,使得,
当二面角的大小为时,求实数的值.
山东省某示范性高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座概率如下表:
|
信息技术 |
生物 |
化学 |
物理 |
数学 |
周一 |
|||||
周三 |
|||||
周五 |
(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
(Ⅱ)设周三各辅导讲座满座的科目数为,求随即变量的分布列和数学期望.
设△ABC三个角A,B,C的对边分别为a,b,c,向量,,且.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC是锐角三角形,,求的取值范围.
关于函数,有下列结论:①函数的定义域是(0,+∞);②函数是奇函数;③函数的最小值为-;④当时,函数是增函数;当时,函数是减函数.
其中正确结论的序号是 .(写出所有你认为正确的结论的序号)
将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案方法种数为______________(用数字作答).