已知函数f(x)=(m为常数0<m<1),且数列{f()}是首项为2,公差为2的等差数列.
(1)=f(),当m=时,求数列{}的前n项和;
(2)设=·,如果{}中的每一项恒小于它后面的项,求m的取值范围.
如图,在三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点.
(1)求证:∥平面;
(2)若为上的动点,当与平面所成最大角的正切值为时,求平面 与平面所成二面角(锐角)的余弦值.
某市直小学为了加强管理,对全校教职工实行新的临时事假制度:“每位教职工每月在正常的工作时间,临时有事,可请假至多三次,每次至多一小时”.现对该制度实施以来50名教职工请假的次数进行调查统计,结果如下表所示:
请假次数 |
||||
人数 |
根据上表信息解答以下问题:
(1)从该小学任选两名教职工,用表示这两人请假次数之和,记“函数在区间上有且只有一个零点”为事件,求事件发生的概率;
(2)从该小学任选两名职工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.
设函数f(x)=sin(ωx+),其中ω>0,||<,若coscos-sinsin =0,且图象的一条对称轴离一个对称中心的最近距离是.
(1)求函数f(x)的解析式;
(2)若A,B,C是△ABC的三个内角,且f(A)=-1,求sinB+sinC的取值范围.
下列说法中正确的是 .
①“若,则”的逆命题为真;
②线性回归方程对应的直线一定经过其样本数据点,,, 中的一个点;
③命题“存在实数,使得”的否定是“对任意实数,均有”
④用数学归纳法证明(n+1)(n+2)(n+n)= ()时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1).
在平面直角坐标系中,不等式组表示的平面区域的面积为5,直线mx-y+m=0过该平面区域,则m的最大值是________________;