已知正数a、b、c满足,求证:
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点。
(I)写出C的直角坐标方程,并求M,N的极坐标;
(II)设MN的中点为P,求直线OP的极坐标方程。
已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,.
过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点、,过点C的直线与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.
(I)当直线过椭圆右焦点时,求线段CD的长;
(II)当点P异于点B时,求证:为定值.
如图,在直四棱柱中,已知,.
(Ⅰ)求证:;
(Ⅱ)设是上一点,试确定的位置,使平面,并说明理由.
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差x(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数y(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求
线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x
的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2
人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理
想?
(参考公式:)