某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为.
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:
|
否定 |
肯定 |
总计 |
男生 |
|
10 |
|
女生 |
30 |
|
|
总计 |
|
|
|
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
如图,四边形是边长为的正方形,以为圆心,为半径的圆弧与以为直径的圆交于点,连接并延长交于.则线段的长为 .
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,则上的动点与上的动点间的最短距离为 .
设,则当与两个函数图象有且只有一个公共点时, .
设,满足约束条件,若目标函数()的最大值为,则的值为 .
如图,菱形的边长为,,为的中点,则的值为 .