一只蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是
A.①② B.①③ C.②④ D.③④
已知函数.
(1) 试判断函数在上单调性并证明你的结论;
(2) 若恒成立, 求整数的最大值;
(3) 求证:.
若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.
如图, 平面平面, 是以为斜边的等腰直角三角形, 分别为, , 的中点, , .
(1) 设是的中点, 证明:平面;
(2) 证明:在内存在一点, 使平面, 并求点到, 的距离.
已知数列为等比数列, 其前项和为, 已知, 且对于任意的有, , 成等差;求数列的通项公式;
如图, 已知单位圆上有四点, 分别设的面积为.
(1)用表示;
(2)求的最大值及取最大值时的值.