如图,旅客从某旅游区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为 m/min,在甲出发2 min后,乙从乘缆车到,在处停留1 min后,再从匀速步行到. 假设缆车匀速直线运动的速度为130 m/min,山路长1260 m ,经测量,,.
(1)求索道的长;
(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图,在三棱锥中,平面平面,,. 过点作,垂足为,点,分别为棱,的中点.
求证:(1)平面平面;
(2).
已知,.
(1)若,求证:;
(2)设,若,求,的值.
在正项等比数列中,,. 则满足的最大正整数的值为
在平面直角坐标系中,设定点,是函数图象上一动点. 若点,之间的最短距离为,则满足条件的实数的所有值为