满分5 > 高中数学试题 >

如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点...

如图,已知双曲线C1说明: 满分5 manfen5.com,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“

说明: 满分5 manfen5.com

(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;

(3)求证:圆x2+y2=说明: 满分5 manfen5.com内的点都不是“C1﹣C2型点”

 

(1)或,其中(2)见解析(3)见解析 【解析】 试题分析:C1的左焦点为(),写出的直线方程可以是以下形式: 或,其中. (2)证明:因为直线y=kx与C2有公共点, 所以方程组有实数解,因此|kx|=|x|+1,得. 若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点. 考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1). 显然直线x=0与C1无公共点. 如果直线为y=kx(|k|>1),则由方程组,得,矛盾. 所以直线y=kx(|k|>1)与C1也无公共点. 因此原点不是“C1﹣C2型点”. (3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直, 故可设l:y=kx+b. 若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间, 从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1. 因为l与C1由公共点,所以方程组有实数解, 得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0. 因为|k|>1,所以1﹣2k2≠0, 因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0, 即b2≥2k2﹣1. 因为圆O的圆心(0,0)到直线l的距离, 所以,从而,得k2<1,与|k|>1矛盾. 因此,圆内的点不是“C1﹣C2型点” 考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质
复制答案
考点分析:
相关试题推荐

已知函数f(x)=2﹣|x|,无穷数列{an}满足an+1=f(an),n∈N*

(1)若a1=0,求a2,a3,a4

(2)若a1>0,且a1,a2,a3成等比数列,求a1的值

(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

 

查看答案

已知函数f(x)=2sin(ωx),其中常数ω>0

(1)令ω=1,判断函数F(x)=f(x)+f(x+说明: 满分5 manfen5.com)的奇偶性,并说明理由;

(2)令ω=2,将函数y=f(x)的图象向左平移个说明: 满分5 manfen5.com单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

 

查看答案

甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣说明: 满分5 manfen5.com)元.

(1)求证:生产a千克该产品所获得的利润为100a(5+说明: 满分5 manfen5.com)元;

(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

 

查看答案

如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.说明: 满分5 manfen5.com

 

查看答案

记椭圆说明: 满分5 manfen5.com围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则说明: 满分5 manfen5.comMn=(  )

A.0                B.说明: 满分5 manfen5.com                C.2                D.2说明: 满分5 manfen5.com

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.