已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是( )
A. B. C. D.
设为直线,是两个不同的平面,下列命题中正确的是( )
A.若,,则 B.若,,则
C.若,,则 D.若,,则
已知椭圆的焦距为4,且过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设为椭圆上一点,过点作轴的垂线,垂足为。取点,连接,过点作的垂线交轴于点。点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.
设函数,其中,区间.
(Ⅰ)求的长度(注:区间的长度定义为;
(Ⅱ)给定常数,当时,求长度的最小值.
设数列满足,,且对任意,函数 满足
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和.
如图,四棱锥的底面是边长为2的菱形,.已知 .
(Ⅰ)证明:
(Ⅱ)若为的中点,求三菱锥的体积.