已知函数f(x)=.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.
已知,分别是椭圆的左、右焦点,关于直线的对称点是圆的一条直径的两个端点。
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为,。当最大时,求直线的方程。
设为数列{}的前项和,已知,2,N
(Ⅰ)求,,并求数列{}的通项公式;
(Ⅱ)求数列{}的前项和。
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(Ⅰ)完成下表,并求所种作物的平均年收获量;
Y |
51 |
48 |
45 |
42 |
频数 |
|
4 |
|
|
(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.
如图.在直棱柱ABC-A1B1C1中,∠ BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在菱BB1上运动。
(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积
已知函数
(1)求的值;
(2)求使 成立的x的取值集合