已知函数.
(Ⅰ)若时,,求的最小值;
(Ⅱ)设数列的通项,证明:.
已知双曲线C:(a>0,b>0)的左、右焦点分别为、,离心率为3,直线y=2与C的两个交点间的距离为.
(Ⅰ)求a,b;
(Ⅱ)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:、、成等比数列.
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
如图,四棱锥P-ABCD中,,,和都是等边三角形.
(Ⅰ)证明:;
(Ⅱ)求二面角A-PD-C的大小.
设的内角A、B、C的对边分别为a、b、c,.
(Ⅰ)求B;
(Ⅱ)若,求C.
给定常数,定义函数,数列满足.
(1)若,求及;
(2)求证:对任意,;
(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.